Characterization of RGD-Glu-(90Y-DOTA)-6-Ahx-RM2 for targeting prostate cancer
Rebecca Schehr, Tamila Stott Reynolds, and Charles J. Smith
Research Division, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO

Acknowledgments
Research funding provided by the Department of Radiology, University of Missouri, Columbia, MO
Student financial support provided by an endowment established by IDEXX-BioResearch
Thanks to Zongrun Jiang for his assistance with this project

Background
When treating cancer, early and accurate tumor detection is vitally important. For example, prostate cancer is second only to skin cancer as the most common cancer of men but must be differentiated from benign disease that presents with similar signs and symptoms. Developing compounds that improve positron emission tomography (PET) or single-photon emission computed tomography (SPECT) can potentially improve tumor cell visualization on imaging. Agents that bind to multiple receptors that are overexpressed on prostate cancer cells accomplish this goal by increasing the density of bound conjugate. The compound developed in this study binds to both Gastrin Releasing Peptide receptor (GRPr) and \(\alpha_v \beta_3 \) integrin receptor.

Methods

natY and 90Y Labeling and Characterization

Figure 1. The chemical structure of the RGD-Glu-DOTA-6-Ahx-RM2 conjugate. In green, RGD (Arg-Gly-Asp), a nonregulatory peptide that targets \(\alpha_v \beta_3 \) integrin receptor; in red, DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), a chelating agent; in purple, Glu (glutamic acid) and 6-Ahx (6-amino hexanoic acid), linkers; and in blue, RM2 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH\(_2\)) an antagonist that targets GRPr.

Figure 2. Schematic depicting the process by which RGD-Glu-DOTA-6-Ahx-RM2 is metallated with either natY or 90Y.

Figure 3. Chromatogram generated via RP-HPLC for RGD-Glu-(90Y-DOTA)-6-Ahx-RM2 immediately after metallation depicting the compound’s retention time (t\(_R\)) of 11.3 minutes.

Figure 4. Mass spectrum generated via ESI-MS depicting peaks for RGD-Glu-(90Y-DOTA)-6-Ahx-RM2 at 810.61 m/z and 1215.86 m/z.

Figure 5. Chromatograms generated via RP-HPLC, with t\(_R\) of 11.3 minutes, demonstrating the stability of RGD-Glu-(90Y-DOTA)-6-Ahx-RM2 in BSA at 2(A), 4(B), 6(C), and 24(D) hours after metallation.

Figure 6. Graph depicting the inhibitory concentration half maximum (IC\(_{50}\)) of RGD-Glu-(natY)-6-Ahx-RM2 for GRPr (blue) and \(\alpha_v \beta_3 \) integrin receptor (green), determined by competitive binding assay against the displacement radioligand \(^{125}\)I-[Tyr^4]-bombesin and \(^{125}\)I-echistatin respectively.

Figure 7. MicroSPECT images demonstrating RGD-Glu-(\(^{111}\)In-DOTA)-6-Ahx-RM2 (left) and RGD-Glu-(\(^{177}\)Lu-DOTA)-6-Ahx-RM2 (right) uptake on prostate cancer cells in PC-3 tumor-bearing SCID mice.

Results

RGD-Glu-(90Y-DOTA)-6-Ahx-RM2 is stable in bovine serum albumin (BSA)

RGD-Glu-(natY-DOTA)-6-Ahx-RM2 has a high binding affinity for GRPr and \(\alpha_v \beta_3 \)

Figure 8. Chromatograms generated via RP-HPLC for RGD-Glu-(natY-DOTA)-6-Ahx-RM2 immediately after metallation depicting the compound’s retention time (t\(_R\)) of 11.3 minutes.

Figure 9. Graph depicting the inhibitory concentration half maximum (IC\(_{50}\)) of RGD-Glu-(natY)-6-Ahx-RM2 for GRPr (blue) and \(\alpha_v \beta_3 \) integrin receptor (green), determined by competitive binding assay against the displacement radioligand \(^{125}\)I-[Tyr^4]-bombesin and \(^{125}\)I-echistatin respectively.

Figure 10. MicroSPECT images demonstrating RGD-Glu-(\(^{111}\)In-DOTA)-6-Ahx-RM2 (left) and RGD-Glu-(\(^{177}\)Lu-DOTA)-6-Ahx-RM2 (right) uptake on prostate cancer cells in PC-3 tumor-bearing SCID mice 24 hours after injection. Tumor location is indicated by green arrows. As a pure \(\beta \) emitting radionuclide, \(^{90}\)Y cannot be visualized on SPECT; however, the same conjugate radiolabeled with either \(^{111}\)In or \(^{177}\)Lu (both gamma emitting radionuclides) demonstrates the compound’s in vivo distribution in tissue. As the \(\beta \) radiation from \(^{90}\)Y only penetrates a small distance in human tissue (about 2.4 mm), it may be useful as a targeted treatment option for prostate cancer.