However, despite MLKL’s importance in mediating necrosis, the downstream targets of MLKL remain unknown.

STUDY OVERVIEW & OBJECTIVES

- Transfect HEK-293 cells with GFP (control) and MLKL-Myc-FLAG plasmids
- Immunoprecipitate the MLKL-protein complexes using an anti-FLAG antibody
- Identify the proteins in the MLKL complexes using LC-MS/MS
- Verify the MLKL-protein interactions by co-immunoprecipitation assays
- Knockdown the candidate proteins in MEFs using siRNA and test the effects on TNFα-induced necrosis

RESULTS

Overexpression of MLKL in 293 Cells

- GFP
- MLKL-FLAG-Myc
- FLAG
- Myc
- GAPDH

Immunoprecipitation of MLKL

- FLAG IP:FLAG IB
- GFP
- MLKL-Myc-FLAG
- FLAG

Proteomic Identification of MLKL-Binding Proteins

<table>
<thead>
<tr>
<th>Protein</th>
<th>GFP Count</th>
<th>MLKL Count</th>
<th>Subcellular Localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFhd2</td>
<td>0.7</td>
<td>2.7</td>
<td>Plasma Membrane (Lipid raft)</td>
</tr>
<tr>
<td>AnxA2</td>
<td>2.2</td>
<td>7.8</td>
<td>Plasma Membrane</td>
</tr>
<tr>
<td>CD59</td>
<td>0.2</td>
<td>5.3</td>
<td>Plasma Membrane</td>
</tr>
<tr>
<td>RIP1</td>
<td>0.0</td>
<td>2.2</td>
<td>Plasma Membrane</td>
</tr>
<tr>
<td>Nekaphosphin-1</td>
<td>0.0</td>
<td>2.4</td>
<td>Nucleus, Cytoplasm</td>
</tr>
<tr>
<td>PARP1</td>
<td>0.0</td>
<td>4.4</td>
<td>Cytoplasm</td>
</tr>
<tr>
<td>Tropomysin-3α</td>
<td>0.0</td>
<td>6.1</td>
<td>Contractile Fibers, Cytoskeleton</td>
</tr>
<tr>
<td>Tropomysin-3β</td>
<td>2.1</td>
<td>9.16</td>
<td>Contractile Fibers, Cytoskeleton</td>
</tr>
<tr>
<td>DRbin-1</td>
<td>4.5</td>
<td>17.18</td>
<td>Cytoskeleton</td>
</tr>
<tr>
<td>α-actinin-4</td>
<td>1.0</td>
<td>21.10</td>
<td>Cytoskeleton</td>
</tr>
<tr>
<td>Calmodulin</td>
<td>0.0</td>
<td>3.3</td>
<td>Cytoskeleton</td>
</tr>
</tbody>
</table>

Candidate MLKL Binding Proteins

Effects of EFhd2 and Annexin-A2 siRNA on TNFα-Induced Necrosis

- COsi
- EFhd2si
- AnxA2si

CONCLUSIONS

- We successfully identified several novel MLKL binding proteins.
- The lipid raft proteins EFhd2 and Annexin-2 interacted with MLKL.
- EFhd2, but not Annexin-A2, appears to be a negative regulator of TNFα-induced necrosis.
- Future studies will evaluate the other MLKL-binding proteins and their potential role in TNFα-induced necrosis.

ACKNOWLEDGEMENTS

Supported by NIH R01 HL094404 and an endowment established by IDEXX-BioResearch