Comparison of Bacillus spore display systems

Nathaniel Kollias1, Hsin-Yeh Hsieh2,3, Che-Min Su3,4, George C. Stewart2,3

1College of Veterinary Medicine, 2Department of Veterinary Pathobiology, Bond Life Sciences Center, 4Department of Biochemistry, University of Missouri

Introduction

Tethering of enzymes to a solid support has been shown to enhance their activity and stability in a variety of industrial and biological applications. Recently, bacterial endospores have been used as particle display systems for covalent attachment of proteins in an environmentally accessible format. Spores are dormant forms of certain soil bacteria, which have the ability to resist environmental degradation for long periods of time due to their unique protein coat. Genetic engineering of the B. subtilis bacterium has shown fusion of foreign proteins to certain spore coat proteins results in surface display of the foreign protein, and enzyme activity and immunogenicity of the attached proteins were also demonstrated. The spore coat proteins used in these studies were CotB, CotC, CotG, and CotX. However, incorporation of the fusion protein into the spore coat is thought to be relatively inefficient, thus limiting the amount of foreign protein that can be displayed on the spore surface. Conversely, B. thuringiensis has an additional structural layer of its spore coat called the exosporium. The architecture of the exosporium includes a surface hairlike nap layer consisting of the BclA glycoprotein. Our laboratory has identified the protein sequence that targets BclA to the spore surface allowing us to express high levels of foreign proteins on the B. thuringiensis exosporium surface. This study was initiated to determine the relative expression levels of foreign proteins on the surface of B. thuringiensis versus B. subtilis spores. Enhanced green fluorescent protein was incorporated into spores of B. thuringiensis using the BclA system or spores of B. subtilis using the CotB, CotC, or CotG systems. Furthermore, fluorescence levels relative to spore titer will be determined.

Acknowledgements

• Dr. George C. Stewart and Dr. Hsin-Yeh Hsieh for their guidance in the research project.
• This research is supported by NIH grant AI101093.
• This work was graciously supported by a stipend from Boehringer Ingelheim Vetmedica.
• The College of Veterinary Medicine, University of Missouri and Bond Life Sciences Center for the facilities to participate in research.

Figure 1: Left: The structure of Bacillus thuringiensis spore; Right: Bacillus subtilis spore

References


Summary and Future Directions

1. eGFP proteins were successfully expressed on spores in CotB, CotC or CotG system of B. subtilis or BclA system of B. thuringiensis with our fusion constructs.
1. The eGFP protein expression patterns were different among the four systems.
1. Quantifying the fluorescent expression level will be the next step for this project.

Acknowledgements

• Dr. George C. Stewart and Dr. Hsin-Yeh Hsieh for their guidance in the research project.
• This research is supported by NIH grant AI101093.
• This work was graciously supported by a stipend from Boehringer Ingelheim Vetmedica.
• The College of Veterinary Medicine, University of Missouri and Bond Life Sciences Center for the facilities to participate in research.